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Vibrational properties of percolating clusters: Localization and density of states

Qiming Li* and C. M. Soukoulis
Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa 50011

Gary S. Grest

Corporate Research Science Laboratory, Exxon Research and Engineering Company, Annandale, New Jersey 08801
(Received 16 January 1990; revised manuscript received 12 March 1990)

The vibrational integrated density of states (DOS) of two-dimensional percolating clusters is
calculated using a novel numerical technique. It is confirmed that the density of states is charac-

terized by an '

power-law behavior in the fracton regime, while a transition to a Debye-type

spectrum occurs at lower frequencies. The dependence of the crossover frequency w. and the
coefficient Ap of the Debye term in the DOS on the concentration p of the percolating cluster are
numerically determined. By use of finite-size scaling methods, the localized nature of all the vi-
brational modes is established. We find that the fracton states as well as the phonon states are
exponentially localized. There is no evidence for fracton superlocalization. However, there is a
power-law dependence of the localization length versus frequency in the fracton regime, which
crosses over to an exponential dependence in the low-frequency regime.

Over the past few years, there has been a growing in-
terest in the vibrational properties' ~* of systems of atoms
which have fractal geometry. A model system that is
known to display fractal behavior over a range of length
(frequency) scales is percolating clusters.*> The struc-
ture of percolating clusters above the percolation thresh-
old is fractal on a scale smaller than &, the percolation
correlation length, and becomes homogeneous on larger
length scales. Alexander and Orbach' first suggested that
the density of states (DOS) of the vibrational modes of
percolating clusters obeys a universal law N(w)~w?~!
above a characteristic frequency w.. It has been conjec-
tured' that the fracton dimensionality d equals % for per-
colation fractals in all dimensions. While d is probably
not exactly § in all dimensions,% it is nevertheless an ex-
tremely good approximation. Vibrational excitations in
this regime are called “fractons.” At very low frequencies
(0 < w.), the DOS follows the ordinary Debye law
N(w)~w“"", where d is the space dimensionality. The
crossover behavior of the DOS has been seen in computer
simulations of two-dimensional percolating®® clusters as
well as in experiments.'© However, no detailed study of
the crossover frequency w. between the phonon and frac-
ton regime for different concentrations exists to compare
with the scaling predictions. We also find, in agreement
with the two previous numerical studies of the density-of-
states,®® no evidence for a discontinuity around @, which
was first suggested by the effective-medium theory of Der-
rida, Orbach, and Yu.!!

Somewhat surprisingly, very little is known about the
localization or extended nature of eigenstates in the frac-
ton regime. Rammal and Toulouse? suggested that frac-
tons are localized, since d= % which is less than 2. It has
been argued'? that the vibrational excitations in disor-
dered systems, such as percolating clusters or a system of
atoms with random masses and the nearest-neighbor force
constant, follow those of the electronic excitations in
disordered systems. In particular, for d=2 it is expect-
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ed'? that the vibrational excitations are always localized
and the localization length A. behaves as A. ~expll/w?].
Recently, Levy and Souillard ' suggested that the fracton
wave function has the following superlocalized form

w(r) ~expl— [r/a.(0)1% , (1)

where A.(w) is the frequency-dependent localization
length and the exponent d, is larger than 1 (thus the name
superlocalized wave function). For the percolating clus-
ter, Levy and Souillard'® suggested that d,=D/d, where
D is the fractal dimension. For d=2, since D=3
=1.896, this gives d,=1.42. Aharony, Entin-Wohlman,
and Orbach ' have suggested that d, = (2 —d)D/d, which
gives a value of less than 1, dy=0.95 for d =2. Therefore,
an open question remains whether superlocalization is
correct and if so, what is the exact value of the exponent
d,? To clarify this point, Yakubo and Nakayawa'> per-
formed detailed numerical calculations using the
equation-of-motion method in two-dimensional percolat-
ing clusters. However, this result d,=2.3 0.1 is much
higher than all the previous estimates of d,. Therefore, it
is clear that a more detailed study is needed for percolat-
ing clusters to clarify the nature of the fracton state.

In this paper, we present a numerical study of the vibra-
tional modes of two-dimensional (2D) percolating net-
works with concentrations p = p.. Through detailed stud-
ies of the integrated density-of-states (IDOS), it is
confirmed that there are two distinct frequency regimes
(phonon and fracton regions) in the DOS separated by
.. The dependence of w. and Ap on p is determined.
Using finite-size scaling techniques, the localization char-
acter of the vibrational modes is established and the fre-
quency dependence of the localization length is also ob-
tained. Finally, within the finite-size scaling technique we
find no indication of superlocalization for the fracton wave
functions.

Consider a lattice characterized by site disorder that is
composed of NV particles of equal mass that are connected
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by linear springs. The displacements u, of the mass points
are given by

= Zptint 2, Kpmtim =mu02u, , )
m

where the sum is over the nearest neighbors of site #» and
2, =Y. nKam. For site percolation, a given lattice site is
occupied by a particle of mass m, =1, with probability p
and is unoccupied with probability 1 —p. The force con-
stant is' taken to be K, =0, if either site n or m is unoccu-
pied and K, =1, otherwise. Since only sites in the same
cluster are connected, each cluster vibrates independently.
In the model, the displacement u, is a scalar. Equation
(2) is completely analogous to the tight-binding Hamil-
tonian of the electronic problem where a considerable
amount of analytic and numerical work has been carried
out over the last fifteen years. The most straightforward
approach to obtain the eigenvalues w and the correspond-
ing eigenvectors is simply to diagonalize the dynamical
matrix. However, only relatively small clusters
(N < 3000) can easily be diagonalized directly due to lim-
itations on computer memory. To study the low-
frequency regime in greater detail and to observe the
crossover frequency ., one needs a much larger system
(N > 10%). Here we investigate the crossover regime at
the vicinity of . for N in the range 10* to 10° using three
different techniques.

For calculating the IDOS, the first technique we em-
ployed was the Sturm sequence method. The method con-
sists of an application of Gaussian elimination on the con-
secutive columns or rows of the matrix (E1 —H), where
E=w? and Hum =Kum —2n8mm. The Gaussian elimina-
tion of the elements of the matrix is applied until the ma-
trix is reduced to a triangular form. The IDOS is then
calculated by counting the fractonal number of positive
elements in the diagonal of the reduced triangular matrix.
For details of the calculation, see Refs. 16 and 17. The
advantage of using this method is both economy in storage
and speed. The computing time rises as M>“~DxN,
which allows us to consider very long strips with length vV
of considerable width M. It also does not require matrix
inversion. In our calculations, we have used systems as
large as 160 % 1280 and 320 % 640 for the 2D case.

In Fig. 1 we plot the DOS of the 2D percolating cluster
for different concentrations of p as a function of frequency
. For high energies, the DOS behaves as » /> consistent
with the Alexander-Orbach conjecture of N(w)~w'”? for
the fracton regime. For each concentration p there exists
a frequency . below which the DOS changes to a regular
Debye regime where N(w)~w for a 2D system. The
DOS is clearly described by two regimes (fracton and
phonon) separated by a crossover frequency .. In Fig. 2,
the crossover frequency w, is plotted versus the concentra-
tion p. As p approaches p., the crossover frequency o,
approaches zero as expected. To a good approximation,
w.~Ar|p—p.| 100 where A;=1.04. This is in
qualitative agreement with the predictions of the scaling
theory which gives w.~ | p —p. | "'+ @] where v is the
correlation length exponent and 6 is the anomalous
diffusion exponent. For very short times ¢, the diffusion is
anomalously slow and the diffusion length R ~¢'/2*®. For
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FIG. 1. The DOS N(w) for 2D site-percolating clusters at
three different percolation concentrations, p.=0.593. Solid
lines are only a visual guide.

a 2D percolating cluster,® v=4/3 and 6=0.87, thus
vi1+(6/2)1 =191 which is larger than the value of
(1.0+0.3) found in our numerical studies. The
discrepancy is probably due, as can be seen from Fig. 1, to
the fact that w. is very difficult to determine.

In Fig. 2, we plot also the coefficient Ap of the Debye
term in the DOS, where N(w) =Apw. The coefficient Ap
is inversely proportional to the sound velocity and |p
—pc|l. It has been argued'® that Ap~|p—p.|?7",
where S is the exponent of the infinite cluster and ¢ is the
conductivity exponent. For a 2D percolating cluster,!®
B= 3% and t=1.3, and therefore Ap~|p—p.| !¢
Our numerical results give Ap~ |p—p.| ~110F005 iy
excellent agreement with the analytical arguments. Thus,
we conclude that the coefficient Ap of the Debye DOS can
be numerically calculated very accurately, while the cross-
over frequency w., which is not as well defined, is very
difficult to determine. Our numerical results of the DOS
do not show any drastic change in the crossover region. It
has been suggested '° that the absence of the hump in the
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FIG. 2. The crossover frequency w. and the coefficient Ap of
the Debye term of the DOS vs | p —p. | on a log-log scale.
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vicinity of the crossover region implies the appearance of
excess DOS in the phonon regime. We systematically an-
alyzed our results to look for such an excess and did not
find it. In fact, Ap/|p —p.|?~" is independent of p and
equal to its Debye value for the perfect lattice.

Now, let us turn to the nature of the eigenstates on a
percolating cluster. Here we use the wire or strip method
which has already been developed®~?? and used with
great success for the electronic motion in simple disor-
dered lattice models. Note that this method has never
been used for the phonon problem. However, because of
the formulation of the phonon problem as given in Eq.
(2), it can be made analogous to the electronic problem.
In the strip method, one considers coupled 1D systems.
Each 1D system is described by an equation of motion of
the form in Eq. (2). The corresponding sites of the
nearest-neighbor 1D system are coupled by an interchain
matrix element K,, which is equal to one if both sites are
present, but is equal to ¢ if one site is missing and equal to
€ if both sites are missing. In the present work, M chains
are coupled into a 2D array with interchain coupling K,p,.
The additional term K, is necessary to ensure that the
lattice is connected. For M regularly placed chains of
length N, one determines the largest localization length
Aa as N— oo, In particular, by studying Ar/M vs M, one
obtains a reasonable estimate of the mobnhty-edge trajec-
tory. At exactly the mobility edge, we found? for a large
number of electronic problems A;/M =0.6, while for ex-
tended and localized states we found that Ay/M vs M in-
creases or decreases, respectively. The localization length
for the 2D percolating system can be obtained by either
plotting M/Ay vs M from which the slope gives 1/A. or by
scaling all the numerical data of A,/M to follow a simple
scaling function of the form Ap/M =f(A./M), where f is
a universal function of its argument. For our studies here,
we used M from 2 through 128 and e =10 ~* with N up to
50000. We found that our results are independent of ¢
provided that € <10 3. Using both of these techniques,
we have calculated A, as a function of frequency or energy
for two concentrations p. As shown in Fig. 3 for
p=p:.=0.593, A.(w)~w %7 for all frequencies.'*?!
This agrees reasonably well wnth the gredlctions of the
scaling analysis Ac(w)~a ~9/P For p=0.70,
we have A.(w) ~w ~%75 for 0> o, -0.1 (in the fracton
regime), while for lower frequencies (in the phonon re-
gimes) we obtain exceptionally large values for the locali-
zation length. We used M up to 128 and N =6000 to
determine A, for these low frequencies. Our numerical re-
sults suggest that as we lower the frequency o past w., a
drop in the A.(w) is observed. Then at even lower fre-
quencies a faster increase is seen. This nonmonotonic
dependence of A.(w) vs w is a very interesting behavior
that we do not completely understand. It might be related
to the change in the DOS from a »'” to @ dependence,
since in the phonon regime the DOS decreases more rap-
idly than in the fracton regime. This change may be
reflected in A.(w), at least around w.. It is also possible
that this is due to the fact that our largest width M is 128.
From the ec‘ulvalcnce of electron localization with phonon
localization '~ for a system with random masses and con-
stant force constants, one would expect an exponential be-
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FIG. 3. The localization length A.(w) versus frequency o for
two different percolation concentrations, p=p.=0.593 and
p=0.70. For p=0.70 there is a nonmonotonic behavior for
Ac(m)

havior for A.(w) ~exp(1/®?). Our data for A, is qualita-
tively consistent with this dependence. However, it is very
interesting that for high frequencies @ > ., the localiza-
tion length follows a simple power law. Experimentally,
this crossover from exponential to power-law behavior of
the frequency dependence of the localization length has
not been observed.

Finally, we have very systematically searched for the
superlocalization behavior of the fracton wave functions
suggested by Levy and Souillard'® and Aharony et al.'*
Contrary to the findings of Yakubo and Nakayama,'’
where the wave function was found to decay faster than
exponential with d, =2.3 + 0.1, we found no indication for
superlocalization in our studies with the transfer method.
The entire transfer method is based on finding in Green’s
function by using recursion relations and assuming that
the ler}gth dependence in Green’s function scaled as
G~e™*. As the length N of the strip increases, if A,
eventually approaches a constant value, this means that
for at least large lengths, the Green’s function and there-
fore the wave functions behave as a simple exponential
and not as in the form given by Eq. (1). It is possible,
however, that for short distances the wave function might
behave as in Eq. (1) with d, > 1. However, this cannot be
checked by the transfer method, which is based on letting
N— oo, This interpretation is consistent with the results
of Ref. 15 in which the eigenvalues and eigenvectors in the
fracton regime are obtained by diagonalizing a large ma-
trix, but only the short length dependence of the wave
functions was used to look for superlocalization. We have
also looked systematically for superlocalization'3 at the
classical percolation'®?° threshold for a 3D quantum-
percolation model. It has been argued'? that in the case
of a 3D quantum percolation, all states at p. are superlo-
calized, since the first extended states appear at the
quantum-percolation threshold p,. While it is clear that
all states at p. <p, are clearly localized, the issue is
whether they are superlocalized. For a 3D tight-binding
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model on the simple cubic lattice with random sites
pe=0.311, while p, =0.42.%° In this case, we find no indi-
cation of superlocalization. While we cannot rule out the
fact that the wave function might be superlocalized at
short lengths, we see no evidence in either the phonon or
quantum electronic case that dy,#1 for very large lengths.
In conclusion, we showed agreement with previous work
that the DOS is characterized by an ' power behavior
in the fracton regime, while a transition to a Debye-type
spectrum occurs at lower frequencies. There is no excess
Debye DOS at the crossover frequency @.. In the phonon
regime, we have that N(w) =Apw, in agreement with the
scaling predictions. We also found that w. scales as
| p —pc |0 in qualitative agreement with the scaling pre-
dictions, but with a lower exponent. Using the very accu-
rate finite-size scaling methods, we numerically estab-
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lished that all the vibrational modes are exponentially lo-
calized. We found that in the fracton regime, the locali-
zation length has a power-law dependence on frequency in
agreement with the scaling predictions. In the phonon re-
gime, the localization length depends exponentially on fre-
quency. Finally, our studies showed no evidence of frac-
ton superlocalization. 23
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